//There is a robot on an m x n grid. The robot is initially located at the top-l
//eft corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corne
//r (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at an
//y point in time.
//
// Given the two integers m and n, return the number of possible unique paths th
//at the robot can take to reach the bottom-right corner.
//
// The test cases are generated so that the answer will be less than or equal to
// 2 * 109.
//
//
// Example 1:
//
//
//Input: m = 3, n = 7
//Output: 28
//
//
// Example 2:
//
//
//Input: m = 3, n = 2
//Output: 3
//Explanation: From the top-left corner, there are a total of 3 ways to reach th
//e bottom-right corner:
//1. Right -> Down -> Down
//2. Down -> Down -> Right
//3. Down -> Right -> Down
//
//
//
// Constraints:
//
//
// 1 <= m, n <= 100
//
// Related Topics Math Dynamic Programming Combinatorics
// 👍 10034 👎 316
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int uniquePaths(int m, int n) {
if (m <= 0 || n <= 0) {
return 0;
}
if (m == 1 || n == 1) {
return 1;
}
int[][] f = new int[m][n];
for (int i = 0; i < m; i++) {
f[i][0] = 1;
}
for (int i = 1; i < n; i++) {
f[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
}
//leetcode submit region end(Prohibit modification and deletion)