给定两个整数 a
和 b
,求它们的除法的商 a/b
,要求不得使用乘号 '*'
、除号 '/'
以及求余符号 '%'
。
注意:
- 整数除法的结果应当截去(
truncate
)其小数部分,例如:truncate(8.345) = 8
以及truncate(-2.7335) = -2
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是
[−231, 231−1]
。本题中,如果除法结果溢出,则返回231 − 1
示例 1:
输入:a = 15, b = 2
输出:7
解释:15/2 = truncate(7.5) = 7
示例 2:
输入:a = 7, b = -3
输出:-2
解释:7/-3 = truncate(-2.33333..) = -2
示例 3:
输入:a = 0, b = 1
输出:0
示例 4:
输入:a = 1, b = 1
输出:1
提示:
-231 <= a, b <= 231 - 1
b != 0
class Solution {
public int divide(int a, int b) {
// 考虑被除数为最小值的情况
if (a == Integer.MIN_VALUE) {
if (b == 1) {
return Integer.MIN_VALUE;
}
if (b == -1) {
return Integer.MAX_VALUE;
}
}
// 考虑除数为最小值的情况
if (b == Integer.MIN_VALUE) {
return a == Integer.MIN_VALUE ? 1 : 0;
}
// 考虑被除数为 0 的情况
if (a == 0) {
return 0;
}
// 一般情况,使用二分查找
// 将所有的正数取相反数,这样就只需要考虑一种情况
boolean rev = false;
if (a > 0) {
a = -a;
rev = !rev;
}
if (b > 0) {
b = -b;
rev = !rev;
}
int left = 1, right = Integer.MAX_VALUE, ans = 0;
while (left <= right) {
// 注意溢出,并且不能使用除法
int mid = left + ((right - left) >> 1);
boolean check = quickAdd(b, mid, a);
if (check) {
ans = mid;
// 注意溢出
if (mid == Integer.MAX_VALUE) {
break;
}
left = mid + 1;
} else {
right = mid - 1;
}
}
return rev ? -ans : ans;
}
// 快速乘
public boolean quickAdd(int y, int z, int x) {
// x 和 y 是负数,z 是正数
// 需要判断 z * y >= x 是否成立
int result = 0, add = y;
while (z != 0) {
if ((z & 1) != 0) {
// 需要保证 result + add >= x
if (result < x - add) {
return false;
}
result += add;
}
if (z != 1) {
// 需要保证 add + add >= x
if (add < x - add) {
return false;
}
add += add;
}
// 不能使用除法
z >>= 1;
}
return true;
}
}