给定一个二维矩阵 matrix
,以下类型的多个请求:
- 计算其子矩形范围内元素的总和,该子矩阵的左上角为
(row1, col1)
,右下角为(row2, col2)
。
实现 NumMatrix
类:
NumMatrix(int[][] matrix)
给定整数矩阵matrix
进行初始化int sumRegion(int row1, int col1, int row2, int col2)
返回左上角(row1, col1)
、右下角(row2, col2)
的子矩阵的元素总和。
示例 1:
输入:
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
- 最多调用
104
次sumRegion
方法
//leetcode submit region begin(Prohibit modification and deletion)
class NumMatrix {
private int[][] sum;
public NumMatrix(int[][] matrix) {
sum = matrix;
if (sum != null) {
for (int i = 1; i < sum.length; i++) {
sum[i][0] = sum[i - 1][0] + sum[i][0];
}
for (int i = 1; i < sum[0].length; i++) {
sum[0][i] = sum[0][i - 1] + sum[0][i];
}
for (int i = 1; i < sum.length; i++) {
for (int j = 1; j < sum[0].length; j++) {
sum[i][j] = sum[i][j] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];
}
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
if (sum == null || row1 < 0 || col1 < 0 || row1 > row2 || col1 > col2 || row2 >= sum.length || col2 >= sum[0].length) {
return 0;
}
int result = sum[row2][col2];
if (row1 > 0) {
result -= sum[row1 - 1][col2];
}
if (col1 > 0) {
result -= sum[row2][col1 - 1];
}
if (row1 > 0 && col1 > 0) {
result += sum[row1 - 1][col1 - 1];
}
return result;
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
//leetcode submit region end(Prohibit modification and deletion)