offer2-36


有效的算符包括 +-*/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

说明:

  • 整数除法只保留整数部分。
  • 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 <= tokens.length <= 104
  • tokens[i] 要么是一个算符("+""-""*""/"),要么是一个在范围 [-200, 200] 内的整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 )
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * )

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
    public int evalRPN(String[] tokens) {
        Stack<Integer> numberQ = new Stack<>();


        for (String token : tokens) {
            if ("+".equals(token) || "-".equals(token) || "*".equals(token) || "/".equals(token)) {
                int right = numberQ.pop();
                int left = numberQ.pop();
                if ("+".equals(token)) {
                    numberQ.push(left + right);
                } else if ("-".equals(token)) {
                    numberQ.push(left - right);
                } else if ("*".equals(token)) {
                    numberQ.push(left * right);
                } else {
                    numberQ.push(left / right);
                }
            } else {
                numberQ.push(Integer.valueOf(token));
            }
        }

        return numberQ.pop();
    }
}
//leetcode submit region end(Prohibit modification and deletion)

文章作者: 倪春恩
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 倪春恩 !