现在你总共有 numCourses
门课需要选,记为 0
到 numCourses - 1
。给你一个数组 prerequisites
,其中 prerequisites[i] = [ai, bi]
,表示在选修课程 ai
前 必须 先选修 bi
。
- 例如,想要学习课程
0
,你需要先完成课程1
,我们用一个匹配来表示:[0,1]
。
返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例 2:
输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
示例 3:
输入:numCourses = 1, prerequisites = []
输出:[0]
提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
- 所有
[ai, bi]
互不相同
class Solution {
// 存储有向图
List<List<Integer>> edges;
// 标记每个节点的状态:0=未搜索,1=搜索中,2=已完成
int[] visited;
// 用数组来模拟栈,下标 n-1 为栈底,0 为栈顶
int[] result;
// 判断有向图中是否有环
boolean valid = true;
// 栈下标
int index;
public int[] findOrder(int numCourses, int[][] prerequisites) {
edges = new ArrayList<List<Integer>>();
for (int i = 0; i < numCourses; ++i) {
edges.add(new ArrayList<Integer>());
}
visited = new int[numCourses];
result = new int[numCourses];
index = numCourses - 1;
for (int[] info : prerequisites) {
edges.get(info[1]).add(info[0]);
}
// 每次挑选一个「未搜索」的节点,开始进行深度优先搜索
for (int i = 0; i < numCourses && valid; ++i) {
if (visited[i] == 0) {
dfs(i);
}
}
if (!valid) {
return new int[0];
}
// 如果没有环,那么就有拓扑排序
return result;
}
public void dfs(int u) {
// 将节点标记为「搜索中」
visited[u] = 1;
// 搜索其相邻节点
// 只要发现有环,立刻停止搜索
for (int v: edges.get(u)) {
// 如果「未搜索」那么搜索相邻节点
if (visited[v] == 0) {
dfs(v);
if (!valid) {
return;
}
}
// 如果「搜索中」说明找到了环
else if (visited[v] == 1) {
valid = false;
return;
}
}
// 将节点标记为「已完成」
visited[u] = 2;
// 将节点入栈
result[index--] = u;
}
}