给定一个正整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int sum = 0;
if (nums == null || nums.length == 0) {
return 0;
}
for (int num : nums) {
sum += num;
}
if ((target > 0 && target > sum) || (target < 0 && target < (-sum))) {
return 0;
}
int[][] dp = new int[nums.length][sum * 2 + 1];
dp[0][convertNum(nums[0], sum)] += 1;
dp[0][convertNum(-nums[0], sum)] += 1;
for (int i = 1; i < nums.length; i++) {
for (int j = 0; j <= sum; j++) {
if (dp[i - 1][j] > 0) {
int origin = -j;
int added = origin + nums[i];
int minus = origin - nums[i];
dp[i][convertNum(added, sum)] += dp[i - 1][j];
dp[i][convertNum(minus, sum)] += dp[i - 1][j];
}
}
for (int j = sum + 1; j < sum * 2 + 1; j++) {
if (dp[i - 1][j] > 0) {
int origin = j - sum;
int added = origin + nums[i];
int minus = origin - nums[i];
dp[i][convertNum(added, sum)] += dp[i - 1][j];
dp[i][convertNum(minus, sum)] += dp[i - 1][j];
}
}
}
return dp[nums.length - 1][convertNum(target, sum)];
}
private int convertNum(int num, int sum) {
if (num <= 0) {
return -num;
} else {
return sum + num;
}
}
}
//leetcode submit region end(Prohibit modification and deletion)